
1

No Silver Lecture:

Essence and Accidents of Computer Science Education
Masters Comprehensive Exam

Jude Allred, 4/20/09

Abstract
This is a survey paper of modern topics within

computer science education, specifically as they

pertain to CS1 and CS2. Presented herein are the

resources and references necessary to assess

what enhancements can be made to an existing

CS1 or CS2 course, and to receive a sufficiently

detailed overview of the potential consequences

of alternate methodologies. In addition to

course-specific topics, this survey also

investigates many of the common difficulties

and hindrances facing students of CS1 and CS2.

Where solutions to these difficulties are known,

solutions are presented.

1. Introduction
With a tip of the hat to Fred Brooks (1), this

paper is a survey of current the topics in

computer science education as they pertain to

CS1 and CS2. Many papers have been written

over the past several years which address topics

within computer science education, the

challenges it faces, and both hypothetical and

well-tested methods of improving its prospects.

There is now sufficient research in the field to

justify assorted conclusions about computer

science education, and to remark on specific

educational needs. We can use this data to

formulate categories for the challenges relating

2

to CS education, and make clear statements

about simple changes which can be effected in

order to produce substantial results.

2. Background
The truth of the matter is that the quality of

computer science education is suffering from a

trend of dropping enrollment (2), (3), poor

gender diversity (2), (3), and a great deal of

infighting and inconsistencies relating to what

pedagogical techniques are most appropriate

(4).

CS1 and CS2, as defined by the ACM (5), are the

focus of the bulk of the educational research in

the field. This seems appropriate, as these

classes are not only the foundation classes for

computer science which are experiencing

severe dropout rates and gender diversity

issues (2) (3), but also these classes are

frequently offered to non-computer science

majors as their introduction and often entire

education within computer science.

No Silver Bullet (1) is a software engineering

article which defines the essential and

accidental difficulties within software

engineering. Essential difficulties are those

inherent in the field, while accidental difficulties

are implementation-bound. Attacking the

essence is a challenge, but the accidents can be

methodically minimized. A parallel can be

drawn with computer science education.

Essential difficulties within computer science

education include the task of conveying

knowledge and skills to a student, the amount

of practice required by a student before they

can master a skill, the process of conveying

mental models and constructs which the

students can use to understand the material,

conveying the concepts of object orientation or

imperative program flow, etc. Accidental

difficulties are therefore bound to

implementation and circumstance: Computer

Science doesn’t appeal to female students (2)

(3) (4), the homework time is spent

disproportionately on debugging (6), students

feel intimidated by CS majors when taking CS

classes (3), the chosen language has convoluted

syntax, etc.

3. Defining CS1 and CS2
CS1 and CS2 derive from a set of curricular

models proposed within the 2001 Computing

Curricula Final Report, as set forth by the ACM

(5). CS1 and CS2 are intended to function as the

first two introductory courses for the field of

computer science.

4. Implementation Strategies for

CS1 and CS2
Implementation strategies are accidental! They

all have the same ultimate goal, the question is

merely where to begin.

The Computing Curricula Final Report proposes

six potential implementation strategies for

these introductory courses: Imperative-first;

Object- first; Functional-first; Breadth-first;

Algorithms-first; Hardware-first (5). Based on

the literature surveyed, the Imperative-first

strategy is the most common implementation

choice, followed by Objects-first. The other

implementation strategies listed were not

frequently mentioned or addressed within the

literature surveyed. In addition to these six

basic strategies, some promising new strategies

which have been proposed: Components-first

and Games-first.

4.1 Imperative-First

3

The imperative-first approach is the most

traditional model for teaching CS1 and CS2 (5).

ACM’s computing curricula notes this approach

as having significant disadvantages in the

context of eventually teaching object

orientation. The curricula further states that if

the imperative-first approach is applied,

students will require additional training in

object oriented programming at an

intermediate level. A common argument for

the imperative-first approach is that by avoiding

the added complexity of object oriented syntax,

students are able to begin programming earlier.

Since programming is a key skill which requires

a lot of practice, introducing it early is beneficial

(5).

Stuart Reges provides evidence in favor of the

imperative-first approach, but advocates using

Java (4). Reges found that teaching object

oriented principles early was proving to be too

difficult for students in CS1, and CS2 suffered as

a result. In an effort to stabilize his university’s

failing curriculum, Reges reverted CS1 to the

imperative-first approach, but adopted Java as

the course language. The primary motivation

for using Java was to give students experience

with the language prior to needing it in CS2.

The Java code written in his CS1 class was

primarily procedural java code- static functions.

Reges admits to the complexity overhead in

using Java, but notes that his students did not

seem to mind it. The procedural Java CS1

course resulted in a significant improvement in

student feedback relative to both the previous

object-oriented Java CS1 course and the

procedural C CS1 course.

Teaching CS1/CS2 via an imperative-first

methodology is certainly feasible, and it is not

uncommon for alternate pedagogical

methodologies to fail to surpass the par of

Imperative-First.

4.2 Objects-First
The Computing Curricula Final Report’s objects-

first model is intended to emphasize object-

oriented programming and design immediately,

and teach control structures and programming

practices as secondary topics motivated by OO’s

need for them. The report cites the complexity

of object oriented languages, such as C++ and

Java, as a chief disadvantage to this approach.

A particularly insightful case study of

implementing an object-first approach is

documented in Object Orientation in CS1-CS2

by Design (7). In iterating upon attempts to

build an object-oriented CS1/CS2 sequence,

they came to discover that many of the existing

approaches and supporting textbooks for an

object-oriented introductory class, while

teaching object-oriented concepts, did not

approach the material in an object-oriented

way: procedural programming is taught, and

then object oriented concepts are built upon it.

Iterating further, they found that introducing

object orientation early was superior, however

the point at which students transition from

procedural to object-oriented methodologies

persisted as a difficulty. They then moved to a

substantially-more-successful method which

involves postponing procedural programming

topics until after object-orientation has been

presented. In spite of concerns for the

transition from object-orientated to procedural

code would be as difficult as the inverse, this

method resulted in substantially increased

student comprehension. They hypothesize that

making object-orientation a student’s first

experience with computer science causes them

to have “objects on the brain” – object models

become their intuitive structure for thinking

4

about computer science, and other computer

science topics, such as procedural

programming, are motivated by their

necessities within object-oriented code. They

also hypothesize that when students learn

procedural programming methods first, they

have trouble understanding the motivation for

object orientation and view the increased

syntax complexity as an unjustified burden.

Goldwasser and Letscher also provide evidence

in favor of an objects-first approach to CS1 (8).

Their approach in noteworthy because they

apply and recommend Python as a

programming language for CS1.

4.3 Components-First
Components-first introductory computer

science classes are intended to focus on the

libraries, API’s, and other common component

infrastructures which are in common use by the

software engineering profession (9).

Components-first approaches are thus highly

pragmatic, and equip students the ability to

compose software applications from existing

components. Two independent components-

first approaches are surveyed within

Components-First Approaches to CS1/CS2:

Principles and Practice (9), and some of key

elements to the components-first approach are

established:

4.3.1 Client-View-First Pedagogy

Students are taught to understand components

not by studying their implementations, but

instead by studying their interfaces. Students

are treated as clients seeking a necessary

component, are provided said component, and

must evaluate its usefulness and abilities based

on how they can work with the interface. Only

after the interface has been sufficiently

motivated and applied do students switch roles

to that of the implementers, and now must

create the underlying structure which fulfills the

interface.

4.3.2 Pointers

By delaying implementation of underlying

component classes, the necessity of teaching

pointers is also delayed. This delay has allows

students more time to become comfortable

with their programming language and its

debugging techniques prior to studying

pointers. The delay can also be used to

motivate the fact that the primitive pointer-

based data structures are frequently available

through component libraries.

4.3.3 Program Complexity

Because students are working with existing

component libraries, their assignments can

more easily be tailored to creating useful,

complex software. This tends to dispel notions

that the techniques they learn are only applied

in “toy” programs.

4.3.4 Data Types

Introduction of the array data type is delayed.

This provides students with the ability to learn

data types at a higher level of abstraction and

focus on common data type manipulation

techniques such as iteration and recursion.

Arrays are introduced later not as a commonly-

used data type, but rather as a data type which

is motivated by its performance properties.

Howe et. al. conclude that the components-first

approach is a legitimate approach to CS1 and

CS2. Reflecting on the difficulty and perceived

resistance to switching an existing CS1/CS2

sequence to a components-first methodology,

they assert adopting Client-View-First pedagogy

would be of significant benefit for any object-

oriented introductory computer science course.

4.4 Games-First

5

Scott Leutenegger and Jeffrey Edgington of the

University of Denver argue for a Games-First

approach to introductory programming classes

(2). Postulating that the concerns over

imperative-first versus objects-first are less

important than the types of assignments and

examples provided to their students, they’ve

constructed a 2D-game-oriented CS1 course

taught using Actionscript/Flash and

C++/OpenGL. Having merely refocused the

course content to game development, but still

teaching and testing on their standard technical

content, Leutenegger and Edgington report a

comprehension increase in all of their course

topics, as well as increased student retention

and substantially increased positive feedback

from their female students.

5. Accidents of CS1 versus CS2
Although they are commonly spoken of jointly,

there are several specific differences between

CS1 and CS2 which give rise to distinct

accidental difficulties for each course.

5.1 Addressing the accidental

difficulties of CS1
CS1 was not constructed with the intention of

functioning as a stand-alone course capable of

preparing students to program professionally

(10), (5), (3). However, as computers become

more and more a part of everyday life, the field

of computer science is becoming ever more

interdisciplinary. Unlike in most other

engineering disciplines, there is now an

expectation of achieving a base-level

proficiency after taking a single introductory

computer science course (10).

While it is desirable to construct a CS1 course

which most benefits students who progress

through the computer science major, it is now

also a necessity to cater to students who expect

to be able to produce meaningful software after

having taken only CS1. It is thus a challenge to

produce meaningful course material which

caters to the diverse population of students

who desire basic computer science training.

One solution is to provide different CS1 courses

to different student demographics (3). A simple

division is to split CS1 based on whether or not

the students in attendance are computer

science majors. The non-majors section, then,

would be able to focus simple and pragmatic

aspects of computer programming, such as

writing simple scripts and applications, while

the majors section could devote more time

building skills that will be necessary in future

computer science courses. Further division may

also be relevant- provide CS1 courses for

students specifically interested in image and

video manipulation, web development, audio

effects and manipulation, etc. While this

approach is likely to be beneficial (3), it

sidesteps the problem of students being

dissatisfied with the content of existing CS1

courses.

Another approach is to attempt to teach CS1 in

an inherently more pragmatic fashion. The

components-first methodology is an example of

an implementation technique which provides

this (9). A smaller change which can make CS1

inherently more pragmatic is to teach the

course using an inherently more pragmatic

language. Scripting languages, especially

Python, are considered especially well-suited to

this task, (3) and (11), because of their low

overhead in creating simple applications.

5.2 Addressing the accidental

difficulties of CS2

6

As CS1 and CS2 are designed to be taught in a

sequence (5), CS2 is inherently dependent on

CS1 succeeding in conveying necessary

prerequisites.

5.2.1 Language

CS2 courses usually incorporate more advanced

language features than are covered in CS1.

Further, it can be the case that the language

students were taught in CS1 is different from

the language being used in CS2. Unfortunately,

students cannot learn a second language in a

primarily independent fashion (10), and

therefore the CS2 course must either ensure

that its students are above a minimum skill level

with the language to be used, or part of the CS2

course must be focused on teaching the

language required.

While this may suggest a set of standards to

which CS1 must conform (such as teaching the

language that will be employed in CS2), it is not

the case that the language chosen in CS1 affects

student performance in CS2. To reiterate this

astonishing finding: The programming language

used to teach CS1 does not have a statistically

significant impact on the performance of

students in CS2 (11), (12). Further, one study

finds that the paradigm (procedural versus

object-oriented) chosen for teaching CS1 does

not have a statistically significant effect on

student performance in an object-oriented CS2

class (12).

This accident derives from the programming

language which is chosen for CS2, and what

supporting resources are provided for students

learning this language. These topics are

discussed in sections 6 and 7.

5.2.2 Inadequate preparation

It can also be the case that students entering

CS2 are not adequately prepared to be taught

the material. This issue is unavoidable, as CS2

students may have taken different CS1 classes,

or no CS1 class at all. One promising approach

to this difficulty is to provide a bridge course

between CS1 and CS2.

To address the issue of many of their students

not possessing an adequate mastery of CS1

material in their CS2 courses, and fed by the

common student complaint that the examples

used in CS1 and CS2 were abstract and non-

compelling, Scott Leutenegger of the University

of Denver developed a game-oriented CS1 to

CS2 bridge class (13). The goals of this class

were to “solidify CS1 concepts, provide

concrete examples rather than abstractions,

add some new topics, motivate the need for

CS2, and offer a class that is fun for most

students.” The course was taught using

Actionscript/Flash. Anecdotally, this class

appeared to be of major benefit to CS students.

It may be that CS1 is simply insufficient

preparation for a significant amount of students

who are entering CS2. If this is the case,

teaching a bridge course, such as the one

described above, could have a very substantial

impact on student performance in CS2. It

seems reasonable to claim that developing and

offering a meaningful bridge course is

substantially easier than reconstructing and

optimizing a CS2 course, especially considering

that both CS1 and CS2 may be taught differently

by different instructors, and therefore

guaranteeing their compatibility would be

impossible.

Aside: As students are typically not allowed into

CS2 without either CS1 or other programming

experience, data on the performance of

students who are introduced to computer

science via CS2 is lacking. It would be a

wonderful sanity check to be able to know how

7

much of an affect CS1 has on student

performance in CS2.

6. The role of Teaching

Assistants, recitations, and labs
Another accidental difficulty of computer

science education is quality control over the

TA’s and lecturers who interact with students.

Many CS1 and CS2 courses include a computer

lab or recitation component, and this

component of the class is often neglected

during curricular innovation of CS1/CS2. This

neglect is odd, given that labs are a key source

of hands-on exposure to course content and

that an effective laboratory experience can free

up lecture time to cover more advanced topics

(14). Indeed, only one of the papers surveyed

attempted to integrate new lab and recitation

techniques with their course experimentation

on course experience (15). Presented here are

two novel approaches toward enhancing the

experience of labs and recitations, one of which

is not a curricular development but rather a

technique which is supportive of more rapid

course innovation.

6.1 Students as Presenters
It is difficult to rapidly develop the content of

CS1 and CS2 courses because as the courses

develop and follow new approaches, so must all

of the supporting faculty, staff, TA’s, etc. To

address this issue, Robbins et. al. propose the

use of students as presenters within CS1 and

CS2 laboratory sessions (14).

Robbins et. al. feared for the quality of their

students’ laboratory experiences. As curricular

changes were made and as the software used in

labs became more sophisticated, teaching

assistants are having to spend increasing

amounts of time troubleshooting software

issues and otherwise managing lab affairs.

Coupled with this, it’s also difficult to assure the

quality and competency of TA’s, especially as

material evolves- it is too much to expect the

TA’s to grade, teach, run the lab, and also have

to learn course material at a faster pace than

the students. The proposed solution, then, is to

have TA’s drop back to a supportive role of

smoothing out the technical issues that arise

during the laboratory sessions and working as

graders. To replace the teaching role of the

TA’s, student presenters would be hired from

the pool of students who excelled in a previous

iteration of the course. These presenters would

be paid, and responsible for teaching a

laboratory session on a specific topic. Because

these are lab sessions for CS1 and CS2, the

student presenters who receive a 4-year degree

in computer science will have the three years

following their initial participation with the

course to iterate on and enhance their

presentations.

With this model, a change in course content no

longer invalidates the qualifications of course

TA’s, instead it merely invalidates the necessity

of the student presenters who focused on the

material which is no longer relevant. Since a

new pool of candidate student presenters is

supplied after every course offering, new topics

can quickly gain student presenters to cover

them.

After implementing student presenters for their

CS2 class, Robbins et. al. surveyed students and

asked them to compare their experiences with

the CS2 labs with their past laboratory

experiences (such as CS1 labs). The response to

having the student presenters was

overwhelmingly positive, and they were

especially grateful of having two teachers

8

available in the laboratory (the student

presenter and the supporting TA) because it

allowed the TA to answer questions on an

individual basis while the presenter could

progress with material.

A downside to this approach is the funding

expenditure relating to hiring the student

presenters. For each presentation, the students

were paid two hours of preparation. The total

expenditure of Robbins et. al.’s experiment

came to $12,000 per semester, but also

included the salaries of student tutors who

staffed the lab 105 hours per week (14 hours

per day).

6.2 Think-Alouds
Inspired by the aforementioned work of

Robbins et. al., Naveed Arshad has created a

recitation experience based on using Think-

Alouds (15). A Think-Aloud is a protocol that

requires a subject to work through a process

while verbally explaining all of the thoughts

they have and methods they employ while

solving the process (15). Arshad’s intent is to

use Think-Alouds as a method of conveying

computer science related problem solving skills

during the recitations of his CS2 course.

High quality TA’s were selected to act as the

Think-Aloud subjects. These TA’s were

exceptional graduate students who have had

many years of programming experience and

often also had experience in industry. After

training the TA’s on the Think-Aloud protocol,

the TA’s would hold Think-Aloud based

recitations based on the preceding lecture’s

material. They were asked to select a

significant problem within the domain currently

being discussed, and would solve it during

recitation using the skills that the students had

been taught. This allowed for the students to

observe the thought processes of the TA’s as

they decomposed and solved the problems.

The students reacted very positively to the

Think-Aloud-based recitations, not only

exhibiting superior problem solving skills, but

also learning good code-writing practices based

on the styles used by the TA’s. At the end of

the course, students were surveyed and asked

to rank the effectiveness of the various aspects

of the course. The Think-Aloud recitations were

the most highly ranked aspect of the course.

7. Choice of language
The choice of which programming language to

use in a computer science course perhaps gives

rise to the biggest accident in computer science

education at the CS1 and CS2 level: Whatever

language you pick must be taught to students.

Recall that “students cannot learn a second

language in a primarily independent fashion”

(10). While there is some relief in knowing that

both the language and the pedagogical

methodology chosen for CS1 appears to be

independent of student performance in CS2

(11) (12), the choice of language for CS1 and

CS2 is still important. Language choice is known

to impact student retention, perception of

computer science, and overall performance

within the class (4), (3), (2), (11).

Assessing the Ripple Effect of CS1 Language

Choice by Dingle and Zander provides an

excellent overview of the strengths and

weaknesses of the commonly employed

programming languages for CS1 as of 2001 (10).

While their insights into C, C++, and Java

maintain relevance, many of the languages that

they survey are no longer mainstream. Further,

since Dingle and Zander’s article, many new

languages have come into focus as candidate

languages for teaching CS1 and CS2.

9

7.1 C
Usage of the C programming language is a topic

of much contention. Some argue that C is both

inappropriate and harmful to teach in an

introductory setting (6), but many agree that

having some exposure to C is still a necessity for

modern computer scientists (16). C is a

significant introductory language in part

because of its small yet powerful grammar (10)

and the access that it provides to rudimentary

pointer and memory operations (17).

A major criticism of C is that students spend an

inordinate amount of time debugging minor

syntactic errors as well as convoluted memory

errors, and that this debugging process is both

demotivating and largely unproductive (6), (10).

Some argue that these are in fact positive traits

of C: successful C programming requires careful

coding practices and strong debugging abilities,

and therefore teaching with C helps to convey

these skills (17).

C is the only programming language discussed

in this survey which is not object-oriented.

7.2 C++
As it is built upon C, C++ naturally shares most

of the strengths and weaknesses of C. As with

C, one of the most significant pedagogical

reasons for choosing C++ is that in enables

meaningful exploration of pointers and memory

management (2). C++ also tends to be more

strongly practical than C because in many

industries, especially computer game

development, C++ is still the primary language

employed (2).

Some meaningful enhancements which C++

provides include enhanced IO, superior access

to libraries (via the STL), enumerations, pass-by-

reference parameters, and object orientation.

Unfortunately, C++ is hailed as way too

complex, and still provides many of C’s

confusing components such as type casting,

implicit type conversion, lack of error detection

for array out-of-bounds errors, etc. (10), (18).

On the bright side, mastering C++ tends to

make other languages seem easy by

comparison.

7.3 Java
Java has been a major player in CS education for

many years. This popularity exists partly

because of Java being considered cutting-edge

and “Cool” (19). Java is no longer a young

language, and since its development, several

new languages have emerged which have built

upon and enhanced Java’s ideals.

While Java is primarily considered as an

alternative to C++, some CS1 courses have

found benefit in using procedural Java in place

of C (4).

Garbage collection, superior String data types,

better compiler and memory management

errors, and a large body of libraries are among

the chief reasons Java is selected. Because

pointers are not practically accessible within

Java, the ability to teach about pointers and

memory management is greatly diminished.

Java’s differentiation between objects and

primitive types also contributes to student

confusion (10).

7.4 C#
C# is a young language which is currently in its

third release iteration. Although built to be

syntactically similar to C++, C# is, at the basic

level, very similar to Java. In 2002, Reges

postulated that C# (then in version 1.0) could be

a viable candidate for replacing Java as a

language for CS1/CS2. The language features

he cited as advantages of C#, all of which still

10

hold in C# 3.0, include simpler IO functionality,

a simpler Main(), a consistent object model,

iterators and foreach loops (Java now has these,

too), properties, reference parameters, and

closures. (19)

Another advantage of C# which may not have

been available during the time of Reges’

research is that C# supports pointers. By using

the unsafe keyword, C#’s garbage collector can

be instructed to consider part of your program

to be unmanaged code. Within this unmanaged

region, C++ style pointers can be created and

manipulated outside of the restraints of the

garbage collector. Although the syntactic

overhead for pointers is higher than that of C or

C++, C#’s pointers still provide a pedagogical

playground for pointer and memory-

management based topics.

A point against C# is that it is not a truly cross-

platform language, and while efforts exist to

create C# environments on non-Windows

systems, Java is more compatible across

platforms.

7.5 Python
Python is rapidly emerging as a very viable

choice for teaching CS1 and CS2, but it is

especially receiving attention for its usefulness

in CS1. Python’s nature as an interpreted

scripting language makes it ideal for students

who are first learning to write code. There is

little to no garbage code overhead with python-

the language lends itself to very concise

statements and syntax. The interpreted nature

of Python means that students can run the

Python interpreter, type code, and receive line-

by-line feedback on the results of their input.

Python is also a heavily object-oriented

language, however, unlike Java and C#, the

additional syntax imposed by the object

orientation is basically nil. It can also be argued

that python is a substantially motivating and

practical for students to learn. (11)

7.6 Actionscript (with Flash)
Actionscript can be an immensely fun language

to learn and work with, and this is a great

reason to choose Actionscript for CS1 or CS2.

There is very low overhead for getting a Flash

project up and running, interactive, and with

visual feedback. In some cases, the project can

be composed entirely using the Flash IDE. Flash

can also be very attractive to students because

of the ease of creating and sharing their

resulting flash files. (13)

The object model within Flash is highly

conducive of event-driven programming, and if

Actionscript is used, it is quite necessary to

instruct students on event-driven programming.

Flash also has the “feature” of being quite slow-

this can be put to good effect by using the

speed limitations of Flash as motivators for

using superior algorithms. (2)

Unfortunately, Actionscript can be very difficult

to debug. The Flash compiler is notorious for

generating code which can fail silently. Further,

transitioning from Actionscript to a C++ style

language has been shown to be unintuitive. (13)

8. Retention Efforts
A common variable measured in course

development efforts for CS1 and CS2 is the

effect of the course on student retention within

CS (20), (21), (22), (13), (3). While it is amiable

to aspire to a singular course to curb student

retention issues in CS, the potential impact of

student outreach programs and cohesive

departmental tutoring and outreach efforts are

also quite substantial (23), (14). Jeffrey Popyack

argues that an ACM-Women’s chapter is a

strong benefit to women in computer science

11

because it provides a community of same-sex

peer support. (24) Orientation activities, such as

the Scavenger Hunt (23), can be highly

impactful. Student moral is certainly an

accidental difficulty within computer science

education, but altering teaching techniques is

among the narrowest ways of addressing it.

Certainly a multi-faceted approach is necessary

to improve retention and gender diversity

issues within computer science, however high-

impact retention efforts such as supporting

student groups and hosting orientation

activities are likely to be much easier to

implement than redesigning CS1 and CS2 into

the ultimate collaborative, educational, and

social experiences.

Can alterations to the teaching methodologies

of CS1 and CS2 improve retention? Yes, and

these alterations are beneficial to pursue. It

should just be considered that perhaps

department-level involvement is a more

substantive channel through which to reach

students.

Among the most consistent methods of

improving student retention, morale, and

community via classroom experiences is to have

courses involve collaboration and teamwork.

In Affective Assessment of Team Skills in Agile

CS1 Labs (20), McKinney and Denton

experimented with using agile techniques to

host project teams in CS1, hypothesizing that

the team aspect of the course would be of

special benefit to the women and minorities in

the class. They allowed students to form their

own five to nine person teams, and then lead

the teams through many of the practices of

agile software development: pair programming,

stand-up meetings, test-driven development,

etc. After leading the teams through three

project iterations, the teams were surveyed.

Distinctive problems arose from allowing teams

to self-form: specifically, skill levels were not

appropriately matched and many teams

suffered as a result. There were many

situations where team members were rude and

unethical, their article hints at several students

who they felt were unfit to work with others. In

spite of these disturbing behaviors, students in

the class exhibited increased senses of comfort

and belonging as a result of the team activities.

Agile methods may or may not be ideal for

approaching teamwork in CS1, but it seems that

even in what appear to be strenuous

collaborative efforts, benefit arises.

9. Comfort, and intimidation, and

interest
Gail Chmura is a high school teacher in Vienna,

Virginia. She teaches introductory computer

science to 135 students every year. While it is

rare for her students to have programming

experience, many of them have experience with

computer games. When she starts her course,

her students who have had computer

experience are, as she puts it, “ready to go”.

The students without computer experience are

timid and anxious- though they are no less

prepared for the material than the other

students, the burden of intimidation weighs on

them. Investigating her students further, she

found all of her students could learn the

material - they just required different amounts

of support, time, and paces of work. She also

found that there were no performance

differences between males and females. (25)

Does intimidation fade after high school? No.

Intimidation and attitude are present factors in

the performance of college-level students

studying computer science (22), (3). How can

12

students be made more comfortable in

computer science classes?

9.1 Comfortable Questions
Forte and Guzdial found that by teaching a CS1-

equivalent course with only non-CS majors

enrolled eased tension and made students feel

more comfortable about asking questions and

participating in class. (3) They also provided

students with a web forum which they could

use to communicate (anonymously, if desired)

with each other about class topics. This forum

successfully facilitated communication between

students who were otherwise too shy to ask

what they perceived as “stupid questions”.

9.2 Comfortable material
Another group found that comfortable

assignment material is a significant factor in

student comfort and interest. Faced with a

class of mixed-background students, they came

to learn to omit mathematical topics from their

computer science assignments and postpone

math-dependent topics until later in the

curriculum. In place of math, assignments were

built around game simulations and simple

software applications. As a bonus, students

who were bad at math became motivated by

their newfound abilities as algorithmists. (26)

9.3 Intriguing content
Thomas Standish and Norman Jacobson of UC

Irvine were disappointed with their students’

lack of interest in theoretical computer science.

Hypothesizing that computer science theory

was not being sufficiently motivated by

teaching standard algorithms, they decided to

incorporate an O(n) sorting algorithm,

ProxmapSort, into their CS2 class. They

anecdotally exclaim “Cool algorithms really do

show that theory is cool!” (27)

The most painfully obvious statement of this

survey paper is about to be presented. Here it

is: Presenting interesting material to students

increases their interest in the field of study.

Ergo, it is advisable to teach interesting things.

9.4 Media and Image Processing
An increasing trend in student engagement is

linked to media and image processing. Some

hypothesize that using media as a conveyance

mechanism for computer science allows

students to feel more artistic about

programming, while others are content to

realize that media is a domain within which

most people are comfortable interacting (3),

(28), (17).

Forte and Guzdial launched what appears to be

the first significant effort in teaching CS1

through media and image manipulation, and

their results from teaching the course to strictly

non-CS majors were overwhelming positive.

One year later, Wicentowski and Newhall

developed and taught a similar course, but this

time targeted as a true CS1 course. Their

results, too, are overwhelmingly positive.

Another year passes and another course

succeeds: Matzko and Davis teach an image

manipulation CS1 course using C. Their results

are less overwhelmingly positive, as a

substantial amount of their students seem to

have struggled with implementations. Even so,

student feedback was positive and student

motivation was high.

Media processing is a powerful motivator for

teaching CS1, and sufficient supporting

materials now exist that new CS1 courses have

many examples to draw upon.

9.5 Games
Game development has been found to be

another highly motivating angle from which to

13

approach computer science education. In

addition to the visual feedback and creative

outlets provided by media processing, game

development allows for opportunities to

illustrate, concretize, and motivate computer

science topics as aspects of game play (13).

As interest in this field grows, educational

infrastructure for is also growing for the

purpose of assisting game-inexperienced

professor with incorporating games into their

lectures. Lewis and Massing provide an

infrastructure for use in running a semester-

long game development project (29), while

Sung and Panitz are working to provide sets of

modular game-oriented assignments which are

designed to be selectively implemented by

interested professors and they move toward

game-oriented teaching. (21).

To dispel any myths on the subject: Games are

not male-biased. While it is true that certain

genres of games have been anecdotally known

to express gender bias, most casual games are

profoundly gender-neutral. “Women play

games too.” (2)

10. Conclusions

10.1 Core Insight
All of the data presented in this survey is

inherently skewed. This skew exists because

the researchers involved in writing these

articles are people who are taking an active

interest in the teaching methodologies of the

CS1 and CS2 courses at their university.

Regardless of their approach, it is reasonable to

expect that any lecturer who commits him or

herself to improving the quality of their

students experience will succeed to some

extent.

The most meaningful results from this survey,

then, derive from the sets of tools presented. A

CS1 course seeking to enhance its curriculum

should be able to find sufficient data within this

survey to be able to ascertain what promising

approaches are available. By following the

references provided herein, sufficient

knowledge can be gleaned to support the

development of any of the pedagogical styles

and techniques surveyed.

10.2 Other Findings

10.2.1 C#

Aside from cross-platform concerns, C# is at

least as viable of a pedagogical language as

Java. C#’s simplified IO, consistent object

model, and ability to work at the pointer-level

should set it above Java as an introductory

language.

10.2.2 Object-first methodologies

A recurring failure in object-first approaches

results from misconceptions of the goals of

object-first pedagogy. Object-first does not

entail teaching rudimentary procedural

techniques and then rapidly advancing to

object-oriented programming. Object-first’s

strength derives from teaching and motivating

object oriented methodologies before

addressing procedural topics.

10.2.3 Component-First methodologies

While substantial results of their effectiveness

remains to be had, initial findings on this style

of teaching are quite encouraging. The Client-

View-First pedagogical technique is capable of

being applied to all introductions of object

orientation. Applying this technique could

provide a general enhancement upon all

standard methods of object-focused teachings.

14

11. References
1. No Silver Bullet: Essence and Accidents of

Software Engineering. Brooks, Frederick Jr. P.

s.l. : ACM, 1987, Computer Volume 20 , Issue 4,

pp. 10-19.

2. A games first approach to teaching

introductory programming. Leutenegger, Scott

and Edgington, Jeffrey. 2007, ACM SIGCSE

Bulletin Volume 39 , Issue 1 , pp. 115-118.

3. Computers for Communication, Not

Calculation: Media as a Motivation and Context

for Learning. Forte, Andrea and Guzdial, Mark.

Big Island, Hawai`i : IEEE Computer Society,

2004. Proceedings of the Proceedings of the

37th Annual Hawaii International Conference

on System Sciences (HICSS'04) - Track 4 -

Volume 4. p. 40096.1.

4. Back to Basics in CS1 and CS2. Reges, Stuart.

2006, ACM SIGCSE Bulletin Volume 38 , Issue 1,

pp. 293-297.

5. Roberts, E., Ed. Computing Curricula 2001:

Computer Science Final Report. New York : IEEE

Computer Society, 2002.

6. C in the first course considered harmful.

Johnson, L F. 1995, Communications of the

ACM Volume 38 , Issue 5, pp. 99-101.

7. Object Orientation in CS1-CS2 by Design.

Alponce, Carl and Ventura, Phil. Aarhus,

Denwark : ACM, 2002. Proceedings of the 7th

annual conference on Innovation and

technology in computer science education. pp.

70-74.

8. Teaching an object-oriented CS1 - with

Python. Goldwasser, Michael H and Letscher,

David. Madrid, Spain : ACM, 2008. Proceedings

of the 13th annual conference on Innovation

and technology in computer science education

table of contents. pp. 42-46.

9. Components-First Approaches to CS1/CS2:

Principles and Practice. Howe, Emily, Thornton,

Matthew and Weide, Bruce W. Norfolk,

Virginia, USA : ACM, 2004. Proceedings of the

35th SIGCSE technical symposium on Computer

science education. pp. 291-295.

10. Assessing the ripple effect of CS1 langiage

chouce. Dingle, Adair and Zander, Carol.

Oregon Graduate Institute, Beaverton, Oregon,

United State : Consortium for Computing

Sciences in Colleges, 2001. Proceedings of the

second annual CCSC on Computing in Small

Colleges Northwestern conference. pp. 85-93.

11. Python CS1 as preparation for C++ CS2.

Enbody, Richard J, Punch, William F and

McCullen, Mark. Chattanooga, TN, USA : ACM,

2009. Proceedings of the 40th ACM technical

symposium on Computer science education. pp.

116-120.

12. Has the paradigm shift in CS1 a harmful

effect on data structures courses: a case study.

Gal-Ezer, Judith, Vilner, Tamar and Zur, Ela.

Chattanooga, TN, USA : ACM, 2009. Proceedings

of the 40th ACM technical symposium on

Computer science education. pp. 126-130.

13. A CS1 to CS2 bridge class using 2D game

programming. Leutenegger, Scott T. 2006,

Journal of Computing Sciences in Colleges

Volume 21 , Issue 5, pp. 76-83.

14. Solving the CS1/CS2 lab dilemma: students

as presenters in CS1/CS2 laboratories. Robbins,

Kay A, et al. 2001, ACM SIGCSE Bulletin Volume

33 , Issue 1, pp. 164-186.

15. Teaching programming and problem solving

to CS2 students using think-alouds. Arshad,

15

Naveed. Chattanooga, TN, USA : ACM, 2009.

Proceedings of the 40th ACM technical

symposium on Computer science education

table of contents. pp. 372-376.

16. Spolsky, Joel. Advice for Computer Science

College Students. Joel On Software. [Online] 1 2,

2005. [Cited: 3 18, 2009.]

www.joelonsoftware.com/articles/CollegeAdvic

e.html.

17. Teaching CS1 with Graphics and C. Matzko,

Sarah and Davis, Timothy A. 2006, ACM SIGCSE

Bulletin Volume 38 , Issue 3 , pp. 168-172.

18. Some Deficiencies of C++ in Teaching CS1

and CS2. Agarwal, Achla and Agarwal, Krishna.

2003, ACM SIGPLAN Notices Volume 38 , Issue 6

, pp. 9-13.

19. Can C# Replace Java in CS1 and CS2? Reges,

Stuart. Aarhus, Denmark : ACM, 2002.

Proceedings of the 7th annual conference on

Innovation and technology in computer science

education. pp. 4-8.

20. Affective assessment of team skills in agile

CS1 labs: the good, the bad, and the ugly.

McKinney, Dawn and Denton, Leo F. 2005,

ACM SIGCSE Bulletin Volume 37 , Issue 1, pp.

465 - 469.

21. Assessing game-themed programming

assignments for CS1/2 courses. Sung, Kelvin, et

al. Miami, Florida : ACM, 2008. Proceedings of

the 3rd international conference on Game

development in computer science education.

pp. 51-55 .

22. CS Minors in a CS1 Course. Kinnunen, Päivi

and Malmi, Lauri. Sydney, Australia : ACM,

2008. Proceeding of the fourth international

workshop on Computing education research.

pp. 79-90.

23. Scavenger hunt: computer science retention

through orientation. Talton, Jerry O, et al. 2006,

ACM SIGCSE Bulletin Volume 38 , Issue 1, pp.

443-447.

24. Take your daughters (and sons) to work: and

leave them there. Popyack, Jeffrey. 2008, ACM

SIGCSE Bulletin Volume 40 , Issue 2, pp. 22-23.

25. What abilities are necessary for success in

computer science. Chmura, Gail A. 1998, ACM

SIGCSE Bulletin Volume 30 , Issue 4, pp. 55-58.

26. Computer Science at Staten Island

Community College: Teaching Computer Science

in an open admissions environment. Chi, Emile

C. s.l. : ACM, 1974. Proceedings of the fourth

SIGCSE technical symposium on Computer

science education. pp. 48-52.

27. Using O(n) ProxmapSort and O(1)

ProxmapSearch to motivate CS2 students (Part

I). Standish, Thomas A and Norman, Jacobson.

2005, ACM SIGCSE Bulletin Volume 37 , Issue 4,

pp. 41 - 44.

28. Using image processing projects to teach

CS1 topics. Wicentowski, Richard and Newhall,

Tia. 2005, ACM SIGCSE Bulletin Volume 37 ,

Issue 1 , pp. 287-291.

29. Graphical game development in CS2: a

flexible infrastructure for a semester long

project. Lewis, Mark C and Massingill, Berna.

Houston, Texas, USA : ACM, 2006. Proceedings

of the 37th SIGCSE technical symposium on

Computer science education. pp. 505-509.

30. A comprehensive project for CS2: combining

key data structures and algorithms into an

integrated web browser and search engine.

Newhall, Tia and Meeden, Lisa. 2002, ACM

SIGCSE Bulletin Volume 34 , Issue 1 , pp. 386-

390.

16

31. Scaffolding for Multiple Assignment Projects

in CS 1 & CS 2. Kussmaul, Clifton L. Nashville,

TN, USA : ACM, 2008. Conference on Object

Oriented Programming Systems Languages and

Applications. pp. 873-876.

32. Games as a "Flavor" of CS1. Bayliss, Jessica

D and Strout, Sean. Houston, Texas, USA : ACM,

2006. Proceedings of the 37th SIGCSE technical

symposium on Computer science education. pp.

500-504.

33. Liberty, Jesse and Xie, Donald.

Programming C# 3.0. Sebastopol, CA : O'Reilly,

2008. 0-596-52743-8.

Word Count: 6,140

